Pat O'Sullivan

Mh4714 Week3

Week 3

0.0.1 Limits (contd.)

Terminology

If a sequence has a limit, L, then we say that it is a *convergent* sequence and that the sequence *converges to* L.

Theorem 0.1 (The Squeezing Theorem)

Let $\{a_n\}$ and $\{b_n\}$ and $\{c_n\}$ be sequences with

$$a_n \leq b_n \leq c_n \quad \forall n > T_1 \in \mathbb{R}.$$

If $\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = L$ then $\lim_{n \to \infty} b_n = L$.

Proof

Since $\lim_{n\to\infty} a_n = L$ then for each $\epsilon > 0$ there is $T_2 \in \mathbb{R}$ such that

$$|a_n - L| < \epsilon, \quad \forall n > T_2.$$

That is

 $-\epsilon < a_n - L < \epsilon, \quad \forall n > T_2$

which gives us

$$L - \epsilon < a_n < L + \epsilon, \quad \forall n > T_2.$$

Since $\lim_{n\to\infty} c_n = L$ then for each $\epsilon > 0$ there is $T_3 \in \mathbb{R}$ such that

$$|c_n - L| < \epsilon, \quad \forall n > T_3.$$

That is

$$-\epsilon < c_n - L < \epsilon, \quad \forall n > T_3$$

which gives us

$$L - \epsilon < c_n < L + \epsilon, \quad \forall n > T_3.$$

Let T be the maximum of $\{T_1, T_2, T_3\}$. Then we have

 $L - \epsilon < a_n \le b_n \le c_n < L + \epsilon, \quad \forall n > T$

That is,

$$L - \epsilon < b_n < L + \epsilon, \quad \forall n > T$$

which gives us

 $-\epsilon < b_n - L < \epsilon, \quad \forall n > T$

That is,

 $|b_n - L| < \epsilon, \quad \forall n > T$

which means that

$$\lim_{n \to \infty} b_n = L.$$

Example 0.2

The sequence $\left\{\frac{1}{n}\sin n\right\}$ is convergent: Since $-1 \leq \sin(n) \leq 1 \quad \forall n \in \mathbb{R}$

then

$$-\frac{1}{n} \le \frac{1}{n} \sin n \le \frac{1}{n} \quad \forall n > 0.$$
$$\lim_{n \to \infty} \frac{-1}{n} = \lim_{n \to \infty} \frac{1}{n} = 0 \text{ and}$$

It is easly to show that $\lim_{n \to \infty} \frac{-1}{n} = \lim_{n \to \infty} \frac{1}{n} = 0$ and so it follows from the Squeezing Theorem that $\lim_{n \to \infty} \frac{1}{n} \sin n = 0$.

0.0.1.1 Sequences of the type $\{r^n\}$.

The sequences

$$\left\{ \left(\frac{1}{2}\right)^n \right\} = \left\{ \frac{1}{2^n} \right\} = \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16} \dots$$
$$\left\{ \left(-\frac{1}{2}\right)^n \right\} = \left\{ \left(\frac{(-1)^n}{2^n}\right) \right\} = -\frac{1}{2}, \frac{1}{4}, -\frac{1}{8}, \frac{1}{16} \dots$$
$$\left\{ \left(\frac{3}{2}\right)^n \right\} = \left\{ \frac{3^n}{2^n} \right\} = \frac{3}{2}, \frac{9}{4}, \frac{27}{8}, \frac{81}{16} \dots$$
$$\left\{ 0.2^n \right\} = 0.2, 0.04, 0.008, 0.0016 \dots$$

are all sequences of the type $\{r^n\}$.

The following lemma is useful for checking the convergence of such sequences:

Lemma 0.3

Let k > 0. $(1+k)^n \ge 1 + nk$ for all integers $n \ge 1$.

Proof (By induction)

Clearly $(1+k)^1 \ge 1+k$ and

$$(1+k)^n \ge 1 + nk \Rightarrow (1+k)^{n+1} \ge (1+k)(1+nk)$$

= 1 + nk + k + nk²
= 1 + n(k + 1) + nk²
> 1 + (n + 1)k

and so it follows by induction that $(1+k)^n \ge 1 + nk$ for all integers $n \ge 1$.

Corollary 0.4

Let k > 0. $(1+k)^n \ge nk$ for all integers $n \ge 1$.

Proof

From the above lemma we have $(1+k)^n \ge 1 + nk$ but clearly $1 + nk \ge nk$

Example 0.5

(i) Consider the sequence $\left\{ \left(\frac{1}{3}\right)^n \right\}$. We have $\left(\frac{1}{3}\right)^n = \frac{1}{3^n} = \frac{1}{(1+2)^n} \le \frac{1}{2n}$

because of the inequality $(1+k)^n \ge nk$ with k=2.

(

And so we have

$$0 < \left(\frac{1}{3}\right)^n \le \frac{1}{2}\frac{1}{n}$$

and, since, $\lim_{n \to \infty} 0 = 0 = \lim_{n \to \infty} \frac{1}{n}$ it follows that $\lim_{n \to \infty} \left(\frac{1}{3}\right)^n = 0$ by the Squeezing Theorem.

(ii) Consider the sequence $\left\{ \left(\frac{-1}{3}\right)^n \right\}$. We have $-\left(\frac{1}{3}\right)^n \le \left(\frac{-1}{3}\right)^n \le \left(\frac{1}{3}\right)^n$

and, since, $\lim_{n \to \infty} -\left(\frac{1}{3}\right)^n = 0 = \lim_{n \to \infty} \left(\frac{1}{3}\right)^n$ it follows that $\lim_{n \to \infty} \left(\frac{-1}{3}\right)^n = 0$ by the Squeezing Theorem.

(iii) Consider the sequence $\left\{ \left(\frac{3}{4}\right)^n \right\}$. We have $\left(\frac{3}{4}\right)^n = \frac{1}{\left(\frac{4}{4}\right)^n} = \frac{1}{\left(1 + \frac{1}{3}\right)^n} \le \frac{1}{\frac{1}{3}n}$

because of the inequality $(1+k)^n \ge nk$ with $k = \frac{1}{3}$.

And so we have

$$0 < \left(\frac{3}{4}\right)^n \le 3\frac{1}{n}$$

and, since, $\lim_{n \to \infty} 0 = 0 = \lim_{n \to \infty} \frac{1}{n}$ it follows that $\lim_{n \to \infty} \left(\frac{1}{3}\right)^n = 0$ by the Squeezing Theorem.

The next result is useful for helping us to prove that certain sequences are *not* convergent.

Theorem 0.6

A convergent sequence is bounded.

Proof

Let $\lim_{n \to \infty} a_n = L$ and let $\epsilon = 1$. There is $T \in \mathbb{R}$ with:

$$\begin{aligned} |a_n - L| < 1, \ \forall \ n > T \\ \Rightarrow L - 1 < a_n < L + 1 \ \forall \ n > T \end{aligned}$$

Let a_{K_1} be the largest of $a_1, a_2, a_3, \ldots a_T$ (That is a_{K_1} is the largest of the first T terms of the sequence.

Let a_{K_2} be the smallest of $a_1, a_2, a_3, \ldots a_T$ (That is a_{K_2} is the smallest of the first T terms of the sequence.

Therefore if we let

$$M = \max\{a_{K_1}L + 1\}$$

and if we let

$$m = \min\{a_{K_2}, L-1\}$$

we have

 $m \leq a_n \leq M, \ \forall \ n \in \mathbb{N}.$

That is, the sequence is bounded.

N.B.: One important deduction from the above theorem is that an *unbounded* sequence is **not** convergent.

Example 0.7

- (i) The sequence {n}, that is, the sequence 1, 2, 3, ... is not bounded and so is not convergent.
- (ii) The sequence $\{kn\}$ is not bounded for any real number $k \neq 0$.

(iii) Consider the sequence $\{3^n\}$. We have

 $3^n = (1+2)^n \ge 2n$

because of the inequality $(1+k)^n \ge nk$ with k = 2. We can see then that $\{3^n\}$ is an unbounded sequence and therefore is not convergent.

(iv) Consider the sequence $\{(-3)^n\}$. Since

 $(-3)^n = 3^n \ge 2n$ when n is even,

it follows that $\{(-3)^n\}$ is unbounded and so is not convergent.

It is clear from the above examples that

 $\{r^n\}$ is convergent with limit 0 when -1 < r < 1 i.e. |r| < 1

and

 $\{r^n\}$ is unbounded and hence not convergent when r < -1 and r > 1 i.e. |r| > 1

The remaining two cases r = 1 and r = -1 have to be considered separately:

When r = 1 then $\{r^n\}$ is simply the constant sequence $\{1\}$ which has limit 1. When r = -1 then $\{r^n\}$ is the sequence $\{(-1)^n\}$, that is, -1, 1, -1, 1... which does not converge.

The sequence $\{(-1)^n\}$ is a useful example of a sequence which is bounded but *not* convergent.

0.0.1.2 Geometric Series.

The convergence properties of the geometric series $\sum_{n=1}^{\infty} ar^{n-1}$ are now determined by the convergence properties of the sequence $\{r^n\}$.

Recall that a series is associated with a sequence known as the sequence of partial sums. The sequence of partial sums for a geometric series is:

 $a, a + ar, a + ar + ar^{2}, a + ar + ar^{2} + ar^{3}, a + ar + ar^{2} + ar^{3} + ar^{4}, \dots$

We will denote the n^{th} term of this sequence by S_n .

We can find a compact expression for S_n as follows:

$$S_n = a + ar + ar^2 + \dots + ar^{n-1}$$

$$\Rightarrow rS_n = ar + ar^2 + ar^3 + \dots + ar^{n-1} + ar^n$$

$$\Rightarrow (1-r)S_n = a - ar^n \Rightarrow S_n = \frac{a - ar^n}{1 - r} \text{ if } r \neq 1.$$

We know from above that $\lim_{n \to \infty} r^n = 0$ when -1 < r < 1, and does not exist when |r| > 1. We see then that $\lim_{n \to \infty} S_n = \lim_{n \to \infty} \frac{a - ar^n}{1 - r} = \frac{a}{1 - r}$ when -1 < r < 1. Therefore $\sum_{n=0}^{\infty} ar^n$ is convergent when -1 < r < 1 and not convergent when |r| > 1.

When r = 1 the Geometric series becomes

$$a + a + a + a \dots$$

That is

$$S_n = na.$$

The sequence $\{na\}$ clearly does not converge except in the trivial case where a = 0.