Pat O'Sullivan

Mh4714 Week 3

Week 3

0.0.1 Limits (contd.)

Terminology

If a sequence has a limit, L, then we say that it is a convergent sequence and that the sequence converges to L.

Theorem 0.1 (The Squeezing Theorem)

Let $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ and $\left\{c_{n}\right\}$ be sequences with

$$
a_{n} \leq b_{n} \leq c_{n} \quad \forall n>T_{1} \in \mathbb{R} .
$$

If $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} c_{n}=L$ then $\lim _{n \rightarrow \infty} b_{n}=L$.

Proof

Since $\lim _{n \rightarrow \infty} a_{n}=L$ then for each $\epsilon>0$ there is $T_{2} \in \mathbb{R}$ such that

$$
\left|a_{n}-L\right|<\epsilon, \quad \forall n>T_{2}
$$

That is

$$
-\epsilon<a_{n}-L<\epsilon, \quad \forall n>T_{2}
$$

which gives us

$$
L-\epsilon<a_{n}<L+\epsilon, \quad \forall n>T_{2} .
$$

Since $\lim _{n \rightarrow \infty} c_{n}=L$ then for each $\epsilon>0$ there is $T_{3} \in \mathbb{R}$ such that

$$
\left|c_{n}-L\right|<\epsilon, \quad \forall n>T_{3}
$$

That is

$$
-\epsilon<c_{n}-L<\epsilon, \quad \forall n>T_{3}
$$

which gives us

$$
L-\epsilon<c_{n}<L+\epsilon, \quad \forall n>T_{3} .
$$

Let T be the maximun of $\left\{T_{1}, T_{2}, T_{3}\right\}$. Then we have

$$
L-\epsilon<a_{n} \leq b_{n} \leq c_{n}<L+\epsilon, \quad \forall n>T
$$

That is,

$$
L-\epsilon<b_{n}<L+\epsilon, \quad \forall n>T
$$

which gives us

$$
-\epsilon<b_{n}-L<\epsilon, \quad \forall n>T
$$

That is,

$$
\left|b_{n}-L\right|<\epsilon, \quad \forall n>T
$$

which means that

$$
\lim _{n \rightarrow \infty} b_{n}=L
$$

Example 0.2

The sequence $\left\{\frac{1}{n} \sin n\right\}$ is convergent:
Since

$$
-1 \leq \sin (n) \leq 1 \quad \forall n \in \mathbb{R}
$$

then

$$
-\frac{1}{n} \leq \frac{1}{n} \sin n \leq \frac{1}{n} \quad \forall n>0
$$

It is easly to show that $\lim _{n \rightarrow \infty} \frac{-1}{n}=\lim _{n \rightarrow \infty} \frac{1}{n}=0$ and so it follows from the
Squeezing Theorem that $\lim _{n \rightarrow \infty} \frac{1}{n} \sin n=0$.

0.0.1.1 Sequences of the type $\left\{r^{n}\right\}$.

The sequences

$$
\begin{aligned}
& \left\{\left(\frac{1}{2}\right)^{n}\right\}=\left\{\frac{1}{2^{n}}\right\}=\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16} \ldots \\
& \left\{\left(-\frac{1}{2}\right)^{n}\right\}=\left\{\left(\frac{(-1)^{n}}{2^{n}}\right)\right\}=-\frac{1}{2}, \frac{1}{4},-\frac{1}{8}, \frac{1}{16} \ldots \\
& \left\{\left(\frac{3}{2}\right)^{n}\right\}=\left\{\frac{3^{n}}{2^{n}}\right\}=\frac{3}{2}, \frac{9}{4}, \frac{27}{8}, \frac{81}{16} \ldots \\
& \left\{0.2^{n}\right\}=0.2,0.04,0.008,0.0016 \ldots
\end{aligned}
$$

are all sequences of the type $\left\{r^{n}\right\}$.
The following lemma is useful for checking the convergence of such sequences:

Lemma 0.3

Let $k>0$.
$(1+k)^{n} \geq 1+n k$ for all integers $n \geq 1$.

Proof (By induction)

Clearly $(1+k)^{1} \geq 1+k$ and

$$
\begin{aligned}
(1+k)^{n} \geq 1+n k \Rightarrow(1+k)^{n+1} & \geq(1+k)(1+n k) \\
& =1+n k+k+n k^{2} \\
& =1+n(k+1)+n k^{2} \\
& >1+(n+1) k
\end{aligned}
$$

and so it follows by induction that $(1+k)^{n} \geq 1+n k$ for all integers $n \geq 1$.

Corollary 0.4

Let $k>0$.
$(1+k)^{n} \geq n k$ for all integers $n \geq 1$.

Proof

From the above lemma we have $(1+k)^{n} \geq 1+n k$ but clearly $1+n k \geq n k$

Example 0.5

(i) Consider the sequence $\left\{\left(\frac{1}{3}\right)^{n}\right\}$.

We have

$$
\left(\frac{1}{3}\right)^{n}=\frac{1}{3^{n}}=\frac{1}{(1+2)^{n}} \leq \frac{1}{2 n}
$$

because of the inequality $(1+k)^{n} \geq n k$ with $k=2$.

And so we have

$$
0<\left(\frac{1}{3}\right)^{n} \leq \frac{1}{2} \frac{1}{n}
$$

and, since, $\lim _{n \rightarrow \infty} 0=0=\lim _{n \rightarrow \infty} \frac{1}{n}$ it follows that $\lim _{n \rightarrow \infty}\left(\frac{1}{3}\right)^{n}=0$ by the Squeezing Theorem.
(ii) Consider the sequence $\left\{\left(\frac{-1}{3}\right)^{n}\right\}$.

We have

$$
-\left(\frac{1}{3}\right)^{n} \leq\left(\frac{-1}{3}\right)^{n} \leq\left(\frac{1}{3}\right)^{n}
$$

and, since, $\lim _{n \rightarrow \infty}-\left(\frac{1}{3}\right)^{n}=0=\lim _{n \rightarrow \infty}\left(\frac{1}{3}\right)^{n}$ it follows that
$\lim _{n \rightarrow \infty}\left(\frac{-1}{3}\right)^{n}=0$ by the Squeezing Theorem.
(iii) Consider the sequence $\left\{\left(\frac{3}{4}\right)^{n}\right\}$.

We have

$$
\left(\frac{3}{4}\right)^{n}=\frac{1}{\left(\frac{4}{3}\right)^{n}}=\frac{1}{\left(1+\frac{1}{3}\right)^{n}} \leq \frac{1}{\frac{1}{3} n}
$$

because of the inequality $(1+k)^{n} \geq n k$ with $k=\frac{1}{3}$.

And so we have

$$
0<\left(\frac{3}{4}\right)^{n} \leq 3 \frac{1}{n}
$$

and, since, $\lim _{n \rightarrow \infty} 0=0=\lim _{n \rightarrow \infty} \frac{1}{n}$ it follows that $\lim _{n \rightarrow \infty}\left(\frac{1}{3}\right)^{n}=0$ by the Squeezing Theorem.

The next result is useful for helping us to prove that certain sequences are not convergent.

Theorem 0.6

A convergent sequence is bounded.

Proof

Let $\lim _{n \rightarrow \infty} a_{n}=L$ and let $\epsilon=1$. There is $T \in \mathbb{R}$ with:

$$
\begin{gathered}
\left|a_{n}-L\right|<1, \forall n>T \\
\Rightarrow L-1<a_{n}<L+1 \forall n>T
\end{gathered}
$$

Let $a_{K_{1}}$ be the largest of $a_{1}, a_{2}, a_{3}, \ldots a_{T}$ (That is $a_{K_{1}}$ is the largest of the first T terms of the sequence.
Let $a_{K_{2}}$ be the smallest of $a_{1}, a_{2}, a_{3}, \ldots a_{T}$ (That is $a_{K_{2}}$ is the smallest of the first T terms of the sequence.

Therefore if we let

$$
M=\max \left\{a_{K_{1}} L+1\right\}
$$

and if we let

$$
m=\min \left\{a_{K_{2}}, L-1\right\}
$$

we have

$$
m \leq a_{n} \leq M, \forall n \in \mathbb{N}
$$

That is, the sequence is bounded.
N.B.: One important deduction from the above theorem is that an unbounded sequence is not convergent.

Example 0.7

(i) The sequence $\{n\}$, that is, the sequence $1,2,3, \ldots$ is not bounded and so is not convergent.
(ii) The sequence $\{k n\}$ is not bounded for any real number $k \neq 0$.
(iii) Consider the sequence $\left\{3^{n}\right\}$.

We have

$$
3^{n}=(1+2)^{n} \geq 2 n
$$

because of the inequality $(1+k)^{n} \geq n k$ with $k=2$.
We can see then that $\left\{3^{n}\right\}$ is an unbounded sequence and therefore is not convergent.
(iv) Consider the sequence $\left\{(-3)^{n}\right\}$.

Since

$$
(-3)^{n}=3^{n} \geq 2 n \text { when } n \text { is even, }
$$

it follows that $\left\{(-3)^{n}\right\}$ is unbounded and so is not convergent.
It is clear from the above examples that

$$
\left\{r^{n}\right\} \text { is convergent with limit } 0 \text { when }-1<r<1 \text { i.e. }|r|<1
$$

and
$\left\{r^{n}\right\}$ is unbounded and hence not convergent when $r<-1$ and $r>1$ i.e. $|r|>1$ The remaining two cases $r=1$ and $r=-1$ have to be considered separately:

When $r=1$ then $\left\{r^{n}\right\}$ is simply the constant sequence $\{1\}$ which has limit 1 . When $r=-1$ then $\left\{r^{n}\right\}$ is the sequence $\left\{(-1)^{n}\right\}$, that is, $-1,1,-1,1 \ldots$ which does not converge.
The sequence $\left\{(-1)^{n}\right\}$ is a useful example of a sequence which is bounded but not convergent.

0.0.1.2 Geometric Series.

The convergence properties of the geometric series $\sum_{n=1}^{\infty} a r^{n-1}$ are now determined by the convergence properties of the sequence $\left\{r^{n}\right\}$.

Recall that a series is associated with a sequence known as the sequence of partial sums. The sequence of partial sums for a geometric series is:

$$
a, a+a r, a+a r+a r^{2}, a+a r+a r^{2}+a r^{3}, a+a r+a r^{2}+a r^{3}+a r^{4}, \ldots
$$

We will denote the $n^{\text {th }}$ term of this sequence by S_{n}.
We can find a compact expression for S_{n} as follows:

$$
\begin{gathered}
S_{n}=a+a r+a r^{2}+\cdots+a r^{n-1} \\
\Rightarrow r S_{n}=a r+a r^{2}+a r^{3}+\cdots+a r^{n-1}+a r^{n} \\
\Rightarrow(1-r) S_{n}=a-a r^{n} \Rightarrow S_{n}=\frac{a-a r^{n}}{1-r} \text { if } r \neq 1
\end{gathered}
$$

We know from above that $\lim _{n \rightarrow \infty} r^{n}=0$ when $-1<r<1$, and does not exist when $|r|>1$. We see then that $\lim _{n \rightarrow \infty} S_{n}=\lim _{n \rightarrow \infty} \frac{a-a r^{n}}{1-r}=\frac{a}{1-r}$ when $-1<r<1$.
Therefore $\sum_{n=0}^{\infty} a r^{n}$ is convergent when $-1<r<1$ and not convergent when $|r|>1$.

When $r=1$ the Geometric series becomes

$$
a+a+a+a \ldots
$$

That is

$$
S_{n}=n a
$$

The sequence $\{n a\}$ clearly does not converge except in the trivial case where $a=0$.

