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Week 3

0.0.1 Limits (contd.)

Terminology
If a sequence has a limit, L, then we say that it is a convergent sequence and
that the sequence converges to L.

Theorem 0.1 (The Squeezing Theorem)

Let {an} and {bn} and {cn} be sequences with

an ≤ bn ≤ cn ∀n > T1 ∈ R.

If lim
n→∞

an = lim
n→∞

cn = L then lim
n→∞

bn = L.

Proof

Since lim
n→∞

an = L then for each ε > 0 there is T2 ∈ R such that

|an − L| < ε, ∀n > T2.

That is
−ε < an − L < ε, ∀n > T2

which gives us
L− ε < an < L + ε, ∀n > T2.

1
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Since lim
n→∞

cn = L then for each ε > 0 there is T3 ∈ R such that

|cn − L| < ε, ∀n > T3.

That is
−ε < cn − L < ε, ∀n > T3

which gives us
L− ε < cn < L + ε, ∀n > T3.

Let T be the maximun of {T1, T2, T3}. Then we have

L− ε < an ≤ bn ≤ cn < L + ε, ∀n > T

That is,
L− ε < bn < L + ε, ∀n > T

which gives us
−ε < bn − L < ε, ∀n > T

That is,
|bn − L| < ε, ∀n > T

which means that
lim

n→∞
bn = L.

Example 0.2

The sequence
{ 1

n
sinn

}
is convergent:

Since
−1 ≤ sin(n) ≤ 1 ∀n ∈ R

then
− 1

n
≤ 1

n
sinn ≤ 1

n
∀n > 0.

It is easly to show that lim
n→∞

−1
n

= lim
n→∞

1
n

= 0 and so it follows from the

Squeezing Theorem that lim
n→∞

1
n

sinn = 0.
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0.0.1.1 Sequences of the type {rn}.

The sequences{(
1
2

)n}
=

{
1
2n

}
=

1
2
,
1
4
,
1
8
,

1
16

. . .

{(
−1

2

)n}
=

{(
(−1)n

2n

)}
= −1

2
,
1
4
,−1

8
,

1
16

. . .

{(
3
2

)n}
=

{
3n

2n

}
=

3
2
,
9
4
,
27
8

,
81
16

. . .

{0.2n} = 0.2, 0.04, 0.008, 0.0016 . . .

are all sequences of the type {rn}.

The following lemma is useful for checking the convergence of such sequences:

Lemma 0.3

Let k > 0.
(1 + k)n ≥ 1 + nk for all integers n ≥ 1.

Proof (By induction)

Clearly (1 + k)1 ≥ 1 + k and

(1 + k)n ≥ 1 + nk ⇒ (1 + k)n+1 ≥ (1 + k)(1 + nk)

= 1 + nk + k + nk2

= 1 + n(k + 1) + nk2

> 1 + (n + 1)k

and so it follows by induction that (1 + k)n ≥ 1 + nk for all integers n ≥ 1.

Corollary 0.4

Let k > 0.
(1 + k)n ≥ nk for all integers n ≥ 1.
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Proof

From the above lemma we have (1 + k)n ≥ 1 + nk but clearly 1 + nk ≥ nk

Example 0.5

(i) Consider the sequence
{(

1
3

)n}
.

We have (
1
3

)n

=
1
3n

=
1

(1 + 2)n
≤ 1

2n

because of the inequality (1 + k)n ≥ nk with k = 2.

And so we have
0 <

(
1
3

)n

≤ 1
2

1
n

and, since, lim
n→∞

0 = 0 = lim
n→∞

1
n

it follows that lim
n→∞

(
1
3

)n

= 0 by the

Squeezing Theorem.

(ii) Consider the sequence
{(

−1
3

)n}
.

We have
−

(
1
3

)n

≤
(
−1
3

)n

≤
(

1
3

)n

and, since, lim
n→∞

−
(

1
3

)n

= 0 = lim
n→∞

(
1
3

)n

it follows that

lim
n→∞

(
−1
3

)n

= 0 by the Squeezing Theorem.

(iii) Consider the sequence
{(

3
4

)n}
.

We have (
3
4

)n

=
1(
4
3

)n =
1

(1 + 1
3 )n

≤ 1
1
3n

because of the inequality (1 + k)n ≥ nk with k = 1
3 .

And so we have
0 <

(
3
4

)n

≤ 3
1
n

and, since, lim
n→∞

0 = 0 = lim
n→∞

1
n

it follows that lim
n→∞

(
1
3

)n

= 0 by the

Squeezing Theorem.
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The next result is useful for helping us to prove that certain sequences are not
convergent.

Theorem 0.6

A convergent sequence is bounded.

Proof

Let lim
n→∞

an = L and let ε = 1. There is T ∈ R with:

|an − L| < 1, ∀ n > T

⇒ L− 1 < an < L + 1 ∀ n > T

Let aK1 be the largest of a1, a2, a3, . . . aT (That is aK1 is the largest of the first
T terms of the sequence.
Let aK2 be the smallest of a1, a2, a3, . . . aT (That is aK2 is the smallest of the
first T terms of the sequence.

Therefore if we let
M = max{aK1L + 1}

and if we let
m = min{aK2 , L− 1}

we have
m ≤ an ≤ M, ∀ n ∈ N.

That is, the sequence is bounded.

N.B.: One important deduction from the above theorem is that an unbounded
sequence is not convergent.

Example 0.7

(i) The sequence {n}, that is, the sequence 1, 2, 3, . . . is not bounded and so
is not convergent.

(ii) The sequence {kn} is not bounded for any real number k 6= 0.
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(iii) Consider the sequence {3n}.
We have

3n = (1 + 2)n ≥ 2n

because of the inequality (1 + k)n ≥ nk with k = 2.
We can see then that {3n} is an unbounded sequence and therefore is not
convergent.

(iv) Consider the sequence {(−3)n}.
Since

(−3)n = 3n ≥ 2n when n is even,

it follows that {(−3)n} is unbounded and so is not convergent.

It is clear from the above examples that

{rn} is convergent with limit 0 when − 1 < r < 1 i.e. |r| < 1

and

{rn} is unbounded and hence not convergent when r < −1 and r > 1 i.e. |r| > 1

The remaining two cases r = 1 and r = −1 have to be considered separately:

When r = 1 then {rn} is simply the constant sequence {1} which has limit 1.
When r = −1 then {rn} is the sequence {(−1)n}, that is, −1, 1,−1, 1 . . . which
does not converge.
The sequence {(−1)n} is a useful example of a sequence which is bounded but
not convergent.

0.0.1.2 Geometric Series.
The convergence properties of the geometric series

∞∑
n=1

arn−1 are now deter-

mined by the convergence properties of the sequence {rn}.

Recall that a series is associated with a sequence known as the sequence of
partial sums. The sequence of partial sums for a geometric series is:

a, a + ar, a + ar + ar2, a + ar + ar2 + ar3, a + ar + ar2 + ar3 + ar4, . . .

We will denote the nth term of this sequence by Sn.

We can find a compact expression for Sn as follows:
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Sn = a + ar + ar2 + · · ·+ arn−1

⇒ rSn = ar + ar2 + ar3 + · · ·+ arn−1 + arn

⇒ (1− r)Sn = a− arn ⇒ Sn =
a− arn

1− r
if r 6= 1.

We know from above that lim
n→∞

rn = 0 when −1 < r < 1, and does not ex-

ist when |r| > 1. We see then that lim
n→∞

Sn = lim
n→∞

a− arn

1− r
=

a

1− r
when

−1 < r < 1.

Therefore
∞∑

n=0
arn is convergent when −1 < r < 1 and not convergent when

|r| > 1.

When r = 1 the Geometric series becomes

a + a + a + a . . . .

That is
Sn = na.

The sequence {na} clearly does not converge except in the trivial case where
a = 0.


